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We consider a family of two-point quadrature formulae and establish sharp
estimates for the remainders under various regularity conditions. Improved forms
of certain integral inequalities due to Hermite and Hadamard, Iyengar,
Milovanović and Pec̆arić, and others are obtained as special cases. Our results can
also be interpreted as analogues to a theorem of Ostrowski on the deviation of a
function from its averages. Furthermore, we establish a generalization of a result of
Fink concerning Lp estimates for the remainder of the trapezoidal rule and present
the best constants in the error bounds. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

An extensive literature deals with inequalities between an integral

1
b−a

F
b

a
f(t) dt



and its trapezoidal approximation 1
2 (f(a)+f(b)) or its midpoint approx-

imation f(12 (a+b)); see [3; 4; 8, Chap. XV]. We begin by recalling the
following classical result of Hermite and Hadamard, which states that

f 1a+b
2
2 [ 1
b−a

F
b

a
f(t) dt [

f(a)+f(b)
2

(1)

when f is a real-valued convex function.
It is assumed throughout this paper that all functions f are real-valued

and therefore we shall tacitly include this property in our hypotheses.
For a function f defined on an interval [a, b], we write f ¥ LipM(o)

with M> 0 and o ¥ (0, 1], and say that f satisfies a Lipschitz condition of
order o with the Lipschitz constantM, if

|f(t2)−f(t1)| [M |t2−t1 |o for all t1, t2 ¥ [a, b].

For notational convenience, the class LipM(1) is simply denoted by LipM.
Recently Dragomir et al. [2] proved the following result.

Theorem A. Let f be a function defined on an interval [a, b] and
belonging to LipM. Then

: 1
b−a

F
b

a
f(t) dt−f 1a+b

2
2 : [M

4
(b−a) (2)

and

: 1
b−a

F
b

a
f(t) dt−

f(a)+f(b)
2
: [M
3
(b−a). (3)

For the trapezoidal approximation, an attractive inequality was found by
Iyengar in 1938; see [7; 8, p. 471, Theorem 1].

Theorem B. Let f be a differentiable function on [a, b] with |fŒ(t)|
[M. Then

: 1
b−a

F
b

a
f(t) dt−

f(a)+f(b)
2
: [M
4
(b−a)−

(f(b)−f(a))2

4M(b−a)
. (4)

Here it is remarkable that a non-negative term is subtracted on the right-
hand side. Another inequality of this type was obtained by Milovanović
and Pec̆arić in 1976; see [8, p. 472, Theorem 4].
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Theorem C. Let f be a differentiable function on [a, b] with fŒ ¥ LipM.
Suppose that fŒ(a)=fŒ(b)=0. Then

: 1
b−a

F
b

a
f(t) dt−

f(a)+f(b)
2
: [M
24
(b−a)2−

(f(b)−f(a))2

2M(b−a)2
. (5)

Note that, if f is twice differentiable and |fœ(t)| [M on [a, b], then fŒ
belongs to LipM. If n > 2 and f has an nth derivative with |f (n)(t)| [M,
then we cannot have a bound in terms of M only. We must also involve
some of the derivatives f (n) (2 [ n < n) since the trapezoidal rule is not
exact for all polynomials of degree n−1. Fink [4, p. 308, Theorem I]
imposed constraints on the derivatives at the end points of the interval and
obtained the following result.

Theorem D. Let f be n times continuously differentiable on [a, b], and
suppose that f (n)(a)=f(n)(b)=0 for n=1, ..., n−1. Then, for each p in
[1,.], there exists a smallest number R(n, p) such that

: 1
b−a

F
b

a
f(t) dt−

f(a)+f(b)
2
: [ R(n, p)

n!
||f (n)||p, (6)

where

||f (n)||p=1F
b

a
|f (n)(t)|p dt2

1/p

(1 [ p <.)

and ||f (n)||.=ess supa [ t [ b |f (n)(t)|.

Fink described the constants R(n, p) by an approximation problem in
the dual norm || · ||q, where p−1+q−1=1. He computed the following expli-
cit values [4, p. 308, Corollary 5]

R(1, 1)=
1
2
, R(1, p)=

(b−a)1−1/p

2(1+q)1/q
(1 < p <.), R(1,.)=

b−a
4
,

(7)

R(2, 1)=
b−a
8
, R(2, 2)=

(b−a)3/2

6`5
, R(2,.)=

(b−a)2

16
, (8)

and

R(3,.)=
(b−a)3

64
, (9)
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and established upper bounds when n \ 3. Here we have given revised
values for R(2, 2) and R(3,.) since the computation in [4] contained an
inaccuracy.

In 1938, Ostrowski [9] proved the following result which generalizes the
estimate of an integral by the midpoint rule.

Theorem E. Let f be a differentiable function on (a, b), and let
|fŒ(t)| [M for t ¥ (a, b). Then, for each x ¥ (a, b),

: 1
b−a

F
b

a
f(t) dt−f(x) : [ 51

4
+1x−

1
2 (a+b)
b−a
226 (b−a) M. (10)

This result was generalized and refined by Fink [4].
In this paper, we study for each real number x ¥ [a, 12 (a+b)] the more

general quadrature formula

1
b−a

F
b

a
f(t) dt=

1
2
(f(x)+f(a+b−x))+E(f; x) (11)

with E(f; x) being the remainder. Our motivation for this choice comes
from the following observations.

Considering x as a parameter, we observe that (11) defines a family of
quadrature formulae which contains the trapezoidal rule and the midpoint
rule as the boundary cases x=a and x=1

2 (a+b), respectively. It also
includes any other quadrature formula with two symmetric nodes; for
example, it includes the two-point Maclaurin formula and the two-point
Gaussian formula. We shall establish estimates for E(f; x) which
generalize Theorems A–D, include these theorems as the special case x=a,
or lead to improvements in two respects. In some cases, we can not only
relax the hypotheses on f, but we can also diminish the constant in the
estimate of E(f; a). All of our results are sharp.

Another important motivation for (11) comes from the fact that any
function f on [a, b] can be split into

f(t)=fe(t)+fo(t),

where

fe(t) :=
f(t)+f(a+b−t)

2
(12)

is its even part and

fo(t) :=
f(t)−f(a+b−t)

2
(13)
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is its odd part. Hence estimates for the remainder E(f; x) in (11) may be
seen as Ostrowski type inequalities (10) for the even part fe of f. It should
be noted that

1
b−a

F
b

a
f(t) dt=

1
b−a

F
b

a
fe(t) dt.

2. STATEMENT OF THE RESULTS

Theorem 2.1. Let f be a function defined on [a, b] and belonging to
LipM(o) with o ¥ (0, 1]. Then, for each x ¥ [a,

1
2 (a+b)], the remainder in

(11) satisfies

|E(f; x)| [
M
b−a

·
(2x−2a)o+1+(a+b−2x)o+1

2o(o+1)
. (14)

This inequality is sharp for each admissible x. Equality is attained if and only
if f=±Mfg+c with c ¥ R and

fg(t) :=˛
(x−t)o for a [ t [ x

(t−x)o for x [ t [ 1
2 (a+b)

fg(a+b−t) for 1
2 (a+b) [ t [ b.

Setting o=1 and x=1
2 (a+b), we recover the estimate (2) of Theorem A.

However, setting o=1 and x=a, we find that the estimate (3) of
Theorem A is not sharp. For a sharp bound, we have to replace the 3 in the
denominator on the right-hand side by 4. All the results in [2] which were
derived from (3) can be improved accordingly.

Although the estimate (14) is sharp, we can establish an improvement in
the spirit of Iyengar’s Theorem B. For simplicity, we restrict ourselves to
o=1 since otherwise the result would be in terms of the solution of a
transcendental equation.

Theorem 2.2. Let f be a function defined on [a, b] and belonging to
LipM. Then, for each x ¥ [a,

1
2 (a+b)], the remainder in (11) satisfies

|E(f; x)| [
M
4
·
(2x−2a)2+(a+b−2x)2

b−a
−
(f(a+b−x)−f(x))2

4M(b−a)
. (15)

264 GUESSAB AND SCHMEISSER



This inequality is sharp for each admissible x. Equality is attained if and only
if f=±Mfg(d; · )+c with c ¥ R and

fg(d; t) :=˛
x−t for a [ t [ x

t−x for x [ t [ 1
2 (a+b+d)

a+b−x−t+d for 1
2 (a+b+d) [ t [ a+b−x

t−a−b+x+d for a+b−x [ t [ b ,

where d is any real number satisfying |d| [ a+b−2x.

Note that for x=a, we obtain the conclusion of Theorem B under a
weaker hypothesis. In particular, we see that Iyengar’s inequality is sharp
in a somewhat larger class of functions. We also obtain a further
improvement of the estimate (3) of Theorem A.

In terms of the even and the odd part of f (see (12)–(13)), we may state
the inequality (15) as

: 1
b−a

F
b

a
f(t) dt−fe(x) : [M

(x− 12 (a+b))
2+(x−a)2

b−a
−
(fo(x))2

M(b−a)

for x ¥ [a, b]. This should be compared with Ostrowski’s inequality (10).
Sometimes, for a Lipschitzian function f, a more refined condition,

a(t2−t1) [ f(t2)−f(t1) [ L(t2−t1) (a [ t1 < t2 [ b) (16)

with a < L, is known. Observe in particular that if f ¥ LipM is non-
decreasing, then (16) holds with L=M and a=0, and if it is non-increas-
ing, then it holds with L=0 and a=−M.

If (16) is satisfied, then the function

g(t) :=f(t)− 12 (L+a) t

belongs to the class LipM with M=1
2 (L− a). Moreover, E(g; x)=E(f; x)

for all x ¥ [a, b]. Therefore, applying Theorem 2.2 to g, we can derive a
refined estimate for E(f; x) in terms of a and L. We leave it to the reader
to state a refinement of Theorem 2.2 for monotonic functions.

If a function f is convex on an open interval that contains [a, b], then it
satisfies (16); see [6, p. 3, Corollary 1.1.6]. We may say that a and L are
bounds for the slopes of f on [a, b].
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Theorem 2.3. Let f be a convex function on an open interval that con-
tains [a, b], and let a and L be a lower and an upper bound for the slopes of
f on [a, b]. Then, for each x ¥ [a, 12 (a+b)], the remainder in (11) satisfies

−
1
8
(L− a)(3a+b−4x)+ [ E(f; x) [

(x−a)2

2(b−a)
(L− a), (17)

where t+ :=
1
2 (t+|t|).

Equality is attained in the upper estimate when x ] a and f=fg+c with
c ¥ R,

fg(t) :=˛
at+x(l− a) for a [ t [ x

lt for x [ t [ a+b−x

Lt+(a+b−x)(l−L) for a+b−x [ t [ b,

and any l ¥ [a, L]. For x=a, equality is attained when f(t)=lt+c with
l ¥ [a, L] and c ¥ R.
Equality is attained in the lower estimate when x ¥ [a, 14 (3a+b)] and
f=fg+c with c ¥ R and

fg(t) :=˛at for a [ t [ 1
2 (a+b)

Lt− 12 (a+b)(L− a) for 1
2 (a+b) [ t [ b.

For x ¥ [14 (3a+b),
1
2 (a+b)], equality is attained when f(t)=lt+c with

l ¥ [a, L] and c ¥ R.

Theorem 2.3 shows that E(f; x) \ 0 for x ¥ [14 (3a+b),
1
2 (a+b)]. The

extremal values x=1
4 (3a+b) and x=1

2 (a+b) give the Maclaurin formula
and the midpoint rule, respectively.

For x=a and x=1
2 (a+b), Theorem 2.3 implies the Hermite–Hadamard

inequality (1) under the slightly stronger hypothesis that f is convex on an
interval larger than [a, b]. But by first considering [a+e, b− e] and letting
eQ 0+, we can easily deduce the result in its full generality.

Now we consider differentiable functions f. Our first result is in terms of
fŒ(x)−fŒ(a+b−x). Therefore it may be reformulated as an Ostrowski
type inequality in terms of f −e(x).

Theorem 2.4. Let f be a differentiable function defined on [a, b] with
fŒ ¥ LipM. For x ¥ [a,

1
2 (a+b)], define

C :=
a+b−2x
b−a

and D :=˛
|fŒ(x)−fŒ(a+b−x)|
(a+b−2x) M

if x ]
1
2
(a+b)

1 if x=
1
2
(a+b).
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Then the remainder in (11) satisfies

|E(f; x)| [
M(x−a)3

3(b−a)
+
M(b−a)2

32
(1−D2) C3

+
M(b−a)2

96
CD |12−24C+(3+D2) C2|.

(18)

This inequality is sharp for each admissible x. Equality is attained for
f(t)=±M > f −g(d; t) dt+c1t+c0 with c0, c1 ¥ R,

f −g(d; t) :=˛
x−t−d for a [ t [ 1

4 (a+b+2x−2d)

t− 12 (a+b) for 1
4 (a+b+2x−2d) [ t [

1
2 (a+b)

−f −g(a+b−t) for 1
2 (a+b) [ t [ b,

and d=(x− 12 (a+b)) D · sgn(12−24C+3C2+D2C2).

Since fŒ ¥ LipM, we must have 0 [ D [ 1. By standard calculus, we can
discuss the behaviour of the right-hand side of (18) in dependence of D and
determine the maximum value for given x. This leads us to the following
result.

Corollary 2.1. Let f be a differentiable function defined on [a, b] with
fŒ ¥ LipM. If a [ x [

1
4 (3a+b), then

|E(f; x)| [
M

12(b−a)
{4(x−a)3+6(a+b−2x)(x−a)2−(a+b−2x)3

+2[(a+b−2x)2−4(x−a)2]3/2}.

This inequality is sharp for each admissible x. Equality is attained for
f(t)=±M > f −g(t) dt+c1t+c0 with c0, c1 ¥ R and

f −g(t) :=˛
1
2 (a+b)−2c−t for a [ t [ 1

2 (a+b)− c

t− 12 (a+b) for 1
2 (a+b)− c [ t [

1
2 (a+b)+c

1
2 (a+b)+2c−t for 1

2 (a+b)+c [ t [ b,

where c=1
2`(b−a)(3a+b−4x).

If 14 (3a+b) [ x [
1
2 (a+b), then

|E(f; x)| [
M

12(b−a)
[4(x−a)3+6(a+b−2x)(x−a)2−(a+b−2x)3].

This inequality is sharp for each admissible x. Equality is attained for
f(t)=± 12Mt

2+c1t+c0 with c0, c1 ¥ R.
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If f has a bounded second derivative and x=a (trapezoidal rule) or
x=1

2 (a+b) (midpoint rule), then we recover two standard results of
Numerical Analysis.

As it is immediately seen, a function that furnishes equality in (18) can
always be chosen such that d :=f(a+b−x)−f(x) has a prescribed value.
In other words, the bound of Theorem 2.4 cannot be improved if the value
of d is known. As such, the situation is quite different from that of
Theorem C which we now improve and generalize.

Theorem 2.5. Let f be a differentiable function defined on [a, b] with
fŒ ¥ LipM. Let x ¥ [a,

1
2 (a+b)), and suppose that fŒ(x)=fŒ(a+b−x)=0.

Then the remainder in (11) satisfies

|E(f; x)| [
1
b−a
5M
3
(x−a)3+

M
32
(a+b−2x)3

−
(f(a+b−x)−f(x))2

2M(a+b−2x)
6 . (19)

This inequality is sharp for each x ¥ [a, 12 (a+b)). Equality is attained for
f(t)=±M > f −g(t) dt+c with c ¥ R and

f −g(t) :=˛
x−t for a [ t [ 1

4 (a+b+2x)−d=: x1

t− 12 (a+b)+2d for x1 [ t [
1
4 (3a+3b−2x)−d=: x2

a+b−x−t for x2 [ t [ b,

where d is any real number satisfying |d| [ 1
4 (a+b−2x).

For x=a, we obtain an improved and sharp version of Theorem C.
When f satisfies the hypotheses of Theorem 2.5, then it also satisfies the
hypotheses of Theorem 2.4 with D=0. But in this case, Theorem 2.5 gives
a better result than Theorem 2.4.

We now want to take advantage of a possible higher regularity of f and
establish results related to Theorem D. The following theorem may also be
seen as a generalization of the Euler–Maclaurin formula.

Theorem 2.6. Let f be a function defined on [a, b] and having there a
piecewise continuous nth derivative. Let Qn be any monic polynomial of
degree n such that Qn(t) — (−1)n Qn(a+b−t). Define

Kn(t) :=˛
(t−a)n for a [ t [ x

Qn(t) for x < t [ a+b−x

(t−b)n for a+b−x < t [ b.

268 GUESSAB AND SCHMEISSER



Then, for the remainder in (11), we have

E(f; x)=C
n−1

n=1

5(x−a)n+1
(n+1)!

−
Q (n− n−1)n (x)

n!
6 f (n)(a+b−x)+(−1)n f (n)(x)

b−a

+
(−1)n

n! (b−a)
F
b

a
Kn(t) f (n)(t) dt. (20)

By appropriate choices of the polynomial Qn, we can deduce from
Theorem 2.6 various results in the spirit of Theorem D.

Corollary 2.2. Let f be n−1 times differentiable on [a, b] with f (n−1)

belonging to LipM. Define

cnn :=D
n

j=0

1
2
11+n− n

n−j
2

and

fnn(x) :=(x−a)n+1−cnn 1x−
a+b
2
2n+1 1a [ x [ a+b

2
2 .

Then the remainder in (11) satisfies

:E(f; x)− C
n−1

n=1
fnn(x)

f (n)(a+b−x)+(−1)n f (n)(x)
(n+1)! (b−a)

:

[
2M
b−a
5(x−a)n+1
(n+1)!

+
(a+b−2x)n+1

22n+1n!
6 .

This inequality is sharp for each admissible x. Equality is attained for

f(t) :=±Mfg(t)+c0+c1t+· · ·+cn−1tn−1

with c0, ..., cn−1 ¥ R and

fg(t) :=˛
(t−x)n

n!
for a [ t [ x

F
t

x

(t−t)n−1

(n−1)!
sgn Un 1

2t−a−b
a+b−2x
2 dt for x < t < a+b−x

(a+b−x−t)n

n!
for a+b−x [ t [ b,

where Un is the nth Chebyshev polynomial of the second kind.
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Next we present a generalization of Theorem D. We shall denote by
en, q the least Lq norm on [−1, 1] in the class of monic polynomials of
degree n, that is,

en, q := inf
a1, ..., an−1

1F 1
−1
|tn+an−1tn−1+·· ·+a0 |q dt2

1/q

. (21)

Theorem 2.7. Let f be a function defined on [a, b] and having there a
piecewise continuous nth derivative. Let x ¥ [a, 12 (a+b)], and suppose that
f (n)(x)=f(n)(a+b−x)=0 for n=1, ..., n−1. Then, for each p in [1,.],
there exists a smallest number R(n, p, x) such that for the remainder in (11),

|E(f; x)| [
R(n, p, x)
n!

||f (n)||p. (22)

Moreover,

R(n, p, x)=
1
b−a
52(x−a)nq+1
nq+1

+1a+b−2x
2
2nq+1 eqn, q6

1/q

(23)

for 1 < p [., p−1+q−1=1, and

R(n, 1, x)=˛
(a+b−2x)n

22n−1(b−a)
if x ¥ [a, x0],

(x−a)n

b−a
if x ¥ 5x0,

1
2
(a+b)6 ,

(24)

where

x0 :=
(22−1/n+1) a+b
22−1/n+2

.

In particular, we have

R(n,., x)=
1
b−a
52(x−a)n+1
n+1

+
(a+b−2x)n+1

4n
6 , (25)

and f=c0+c1fg with c0, c1 ¥ R and fg as defined in Corollary 2.2 yields
equality in (22);

R(n, 2, x)=
1

(b−a)=n+1
2

r (x−a)2n+1+(a+b−2x)
2n+1

2 12n
n
22 s

1/2

, (26)
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and f=c0+c1fg with c0, c1 ¥ R and

fg(t) :=˛
(t−a)2n

(2n)!
− C

n

n=1

(t−x)n− n (x−a)n+n

(n− n)! (n+n)!
for a [ t [ x

1
(2n)!
51a+b
2
−t2

2

−1a+b
2
−x2

26n for x [ t [
1
2
(a+b)

fg(a+b−t) for
1
2
(a+b) [ t [ b

yields equality in (22).

For x=a, Theorem 2.7 yields representations for the constants R(n, p)
in Theorem D. These results are also contained in [1, Theorem 2].

Corollary 2.3. In the situation of Theorem D, we have

R(n, p)=1b−a
2
2n−1/p en, q

2
(1 [ p [., p−1+q−1=1)

with en, q given by (21). In particular,

R(n, 1)=
(b−a)n−1

22n−1
,

R(n, 2)=
(n!)2 (b−a)n−1/2

(2n)!`2n+1
,

R(n,.)=
(b−a)n

4n
.

3. TECHNIQUES AND LEMMAS

For the convenience of the reader, we shall first collect some technical
results which will be used in the proofs of our theorems. As we shall see, we
make decisive use of the following observation, which we state as a remark
for later reference.

Remark 3.1. Let f ¥ LipM, and suppose that the graph of f passes
through the point (t, g). Then the function f enjoys a remarkable approx-
imation property, which is expressed by the following inequalities

j(t, g; t) :=g−M |t−t| [ f(t) [ g+M |t−t|=: k(t, g; t). (27)

SHARP INTEGRAL INEQUALITIES 271



The functions j(t, g; · ) and k(t, g; · ) themselves belong to LipM. More-
over, if we know k points (t1, g1), ..., (tk, gk) on the graph of f, then the
estimate (27) can be refined. In fact, defining

j(t) :=max
1 [ j [ k

j(tj, gj; t) and k(t) := min
1 [ j [ k

k(tj, gj; t),

we have

j(t) [ f(t) [ k(t),

and again j and k belong to LipM.

The following observation, which we state as a lemma, will be very
useful. Roughly spoken it implies that, if an estimate for the remainder of a
quadrature formula holds for all functions f which are piecewise continu-
ously differentiable and satisfy |fŒ(t)| [M, then it also holds for all func-
tions f from the wider class LipM.

Lemma 3.1. Let g be a piecewise continuous function on [a, b] such that
>ba |g(t)| dt [K. Let f ¥ LipM, and consider a partition

a=t0 < t1 < · · · < tN=b (28)

of the interval [a, b]. Define f̃: [a, b]Q R by

f̃(t) :=
t−tj
tj−1−tj

f(tj−1)+
tj−1−t
tj−1−tj

f(tj) for t ¥ [tj−1, tj]

(j=1, ..., N).

ˇ (29)

Then f̃ is piecewise continuously differentiable, |f̃Œ(t)| [M at all points t in
[a, b]0{t0, ..., tN}, and

|f(t)− f̃(t)| [
M
2

max
1 [ j [N

(tj−tj−1) (a [ t [ b),

:F b
a
g(t) f(t) dt−F

b

a
g(t) f̃(t) dt : [MK

2
max
1 [ j [N

(tj−tj−1).

Proof. Obviously, the function f̃ is piecewise linear. Moreover, if
t ¥ (tj−1, tj) for some j ¥ {1, ..., N}, then f̃Œ(t) exists and, because of the
Lipschitz condition for f,

|f̃Œ(t)|=:f(tj−1)−f(tj)
tj−1−tj
: [M.
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Now let t be any point in [a, b]. Clearly t lies in some interval [tj−1, tj]
and therefore

|f(t)− f̃(t)|=: t− tj
tj−1−tj

(f(t)−f(tj−1))+
tj−1−t
tj−1−tj

(f(t)−f(tj)) : .

Hence, making again use of the Lipschitz condition, we find that

|f(t)− f̃(t)| [ 2M
|t−tj | · |t− tj−1 |
|tj−tj−1 |

[
M
2
|tj−tj−1 |.

With this, the proof is easily completed. L

The following result is a special case of the representation of functionals
by Peano kernels. It may be directly verified by integration by parts on
appropriate subintervals.

Lemma 3.2. Let f be piecewise continuously differentiable on [a, b].
Then

E(f; x)=
1
b−a

F
b

a
K(t) fŒ(t) dt, (30)

where

K(t) :=˛
a−t for a [ t [ x
1
2 (a+b)−t for x < t [ (a+b−x)

b−t for (a+b−x) < t [ b.

(31)

In connection with the following lemma, we should realize that, if f is a
piecewise continuous function on an interval [a, b], then a primitive of
order k, as given by

fk(t) :=F
t

a

1F tk
a

1 ... F t2
a
f(t1) dt1 ...2 dtk−1 2 dtk,

can be expressed by a single integral as

fk(t)=F
t

a

(t−t)k−1

(k−1)!
f(t) dt.

Lemma 3.3. Let

Fk(t) :=F
t

−1

(t−t)k−1

(k−1)!
sgn Un(t) dt,
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where Un is the nth Chebyshev polynomial of the second kind. Then

Fk(−1)=Fk(1)=0 for k=1, ..., n.

Proof. The definition of Fk shows immediately that Fk(−1)=0 for
k=1, ..., n.

Since

Fk(1)=F
1

−1

(1−t)k−1

(k−1)!
sgn Un(t) dt

and since on [−1, 1] the function sgn Un is known to be orthogonal to
each polynomial of degree at most n−1 (see, e.g., [10, Lemma 1.5.6]), it
also follows that Fk(1)=0 for k=1, ..., n. L

4. PROOFS

Throughout this section, x shall always be an arbitrary but fixed number
from [a, 12 (a+b)] while t may vary in [a, b].

The following proofs contain analytical descriptions of simple geometri-
cal ideas. The reader may get additional help, in particular in arguments
based on Remark 3.1, by recollecting the geometrical interpretations and
by drawing figures.

Proof of Theorem 2.1. Set c :=1
2 (a+b). Then, as a consequence of the

Lipschitz condition,

|E(f; x)|=
1
b−a
:F c
a
(f(t)−f(x)) dt+F

b

c
(f(t)−f(a+b−x)) dt :

[
M
b−a
5F c
a
|t−x|o dt+F

b

c
|t−a−b+x|o dt6

=
2M
b−a

·
(x−a)o+1+(12 (a+b)−x)

o+1

o+1
,

which is the bound in (14). The statement on the occurrence of equality is
easily verified. L

Proof of Theorem 2.2. In view of Theorem 2.1, it is enough to consider
the case where x ] 1

2 (a+b). Let u, v ¥ R with

|u−v|
a+b−2x

[M,
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and denote by FM(u, v) the class of all functions which belong to LipM on
[a, b] and satisfy f(x)=u and f(a+b−x)=v. Hence the graph of each
f ¥FM(u, v) passes through the points (x, u) and (a+b−x, v). In view of
Remark 3.1 with k=2, we therefore have

j(t) :=u−Mfg 1
u−v
M
; t2 [ f(t) [ u+Mfg 1

v−u
M
; t2=: k(t)

for each f ¥FM(u, v) and all t ¥ [a, b], where fg is the function specified in
the theorem. Moreover, j and k themselves belong to FM(u, v). Thus, for
any f ¥FM(u, v),

|E(f; x)| [ sup
g ¥FM(u, v)

: 1
b−a

F
b

a
g(t) dt−

u+v
2
:

=max{|E(j; x)|, |E(k; x)|}.

A simple calculation shows that |E(j; x)|=|E(k; x)| and that this value is
equal to the right-hand side of (15). This proves (15) and verifies the
statement on the occurrence of equality. L

Proof of Theorem 2.3. If f satisfies the hypotheses of Theorem 2.3, then
the associated function f̃, as defined by (29), is again convex and

a [ f̃Œ(t) [ L for t ¥ [a, b]0{t0, ..., tN}.

Furthermore, we may choose the partition (28) such that x and a+b−x
are amongst the points t0, ..., tN, so that

f̃(x)=f(x) and f̃(a+b−x)=f(a+b−x).

Now it is easily seen by employing Lemma 3.1 with g(t) — 1 and consid-
ering sufficiently refined partitions that it is enough to prove the theorem
under the additional assumption that f is piecewise continuously differen-
tiable. But then

a [ f −−(t1) [ f
−

+(t2) [ L for a [ t1 [ t2 [ b, (32)

where

f −± (t) := lim
eQ 0+

fŒ(t± e).

Moreover, Lemma 3.2 applies. Discussing K(t)fŒ(t) on the four subinter-
vals

(a, x), (x, 12 (a+b)), (
1
2 (a+b), a+b−x), (a+b−x, b)
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under the side condition (32), we find that the integral in (30) becomes
largest when

fŒ(t)=˛
a for a [ t [ x

l for x < t [ a+b−x

L for a+b−x < t [ b

with any l ¥ [a, L]. This gives the upper bound in (17).
Similarly we note that E(f; x) becomes smallest for a function f such

that

fŒ(t)=˛l1 for a [ t [ 1
2 (a+b)

l2 for 1
2 (a+b) [ t [ b,

where a [ l1 [ l2 [ L. Calculating E(f; x) for these functions f, we find
that the minimum value depends on x. If x ¥ [a, 14 (3a+b)], then it is
attained for l1=a and l2=L, while for x ¥ [14 (3a+b),

1
2 (a+b)], it is

attained when l1=l2 ¥ [a, L]. This leads to the lower estimate in (17). The
proof also reveals the cases of equality. L

Proof of Theorem 2.4. We restrict ourselves to the case where
x ] 1

2 (a+b) since otherwise the theorem reduces to a known result. Denote
by FM(D) the class of all functions f on [a, b] such that fŒ ¥ LipM and

|fŒ(x)−fŒ(a+b−x)|
(a+b−2x) M

=D.

We have to determine

A := sup
f ¥FM(D)

|E(f; x)|.

First we note that, if f ¥FM(D), then its even part fe, as defined by (12),
also belongs to FM(D) and E(f; x)=E(fe; x). Hence we may restrict our
considerations to the subclass FM, e(D) consisting of all even functions in
FM(D).

If f ¥FM, e(D), then fŒ is an odd function on [a, b]. In view of
Lemma 3.2, we therefore have

A= sup
f ¥FM, e(D)

2
b−a
:F (a+b)/2
a

K(t) fŒ(t) dt : .

Next we note that every f ¥FM, e(D) satisfies

fŒ 11
2
(a+b)2=0 and fŒ(x)=±

a+b−2x
2

MD. (33)
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For the following discussion, it suffices to consider the case that fŒ(x) is
non-negative. Then (33) fixes two points on the graph of fŒ. In view of
Remark 3.1, this allows us to establish within FM, e(D) a majorant and a
minorant for fŒ. In particular, we find that

MK(t) F(t) [K(t) fŒ(t) [MK(t)Y(t) for t ¥ [a, 12 (a+b)],

where

F(t) :=˛x−t+d for a [ t [ 1
4 (a+b+2x+2d)

t− 12 (a+b) for 1
4 (a+b+2x+2d) < t [

1
2 (a+b)

and

Y(t) :=˛ t−x+d for a [ t [ 1
4 (a+b+2x−2d)

1
2 (a+b)−t for 1

4 (a+b+2x−2d) < t [
1
2 (a+b)

with d :=(12 (a+b)−x) D. Hence

A=max 3 2M
b−a
:F (a+b)/2
a

K(t) F(t) dt : , 2M
b−a
:F (a+b)/2
a

K(t) Y(t) dt : 4 .

The two integrals on the right-hand side can be calculated explicitly. Each
of them may be bigger than the other, depending on x and D. Carrying out
the details, we arrive at the conclusion of Theorem 2.4. L

Proof of Corollary 2.1. As we have pointed out in Section 2, Corollary
2.1 can be deduced from Theorem 2.4, but a direct proof may be simpler.
In view of Lemmas 3.1 and 3.2, it suffices to prove the corollary for func-
tions f which have piecewise a continuous second derivative such that
|fœ(t)| [M. For this class of functions, we may use the representation of
E(f; x) by means of the second Peano kernel. It says that

E(f; x)=
1
b−a

F
b

a
K2(t) fœ(t) dt,

where

K2(t) :=˛
1
2 (t−a)

2 for a [ t [ x
1
2 [t

2−(a+b) t+(b−a) x+a2] for x < t [ a+b−x
1
2 (t−b)

2 for a+b−x < t [ b.

SHARP INTEGRAL INEQUALITIES 277



Now we see that |E(f; x)| becomes largest when fœ(t)=M sgn K2(t). The
proof is easily completed by determining the sign of K2(t) in dependence of
x and t. L

Proof of Theorem 2.5. Let us denote by F −

M(D) be class of all functions
which are differentiable on [a, b] with fŒ belonging to LipM and which
satisfy

f(a+b−x)−f(x)=D and fŒ(x)=fŒ(a+b−x)=0.

We want to determine for each x ¥ [a, 12 (a+b)) the supremum of |E(f; x)|
over all f ¥F −

M(D). Using Lemma 3.2, we find by a short reflection that

sup
f ¥F

−

M(D)
|E(f; x)|=S1+S2+S3, (34)

where

S1= sup
f ¥F

−

M(D)

: 1
b−a

F
x

a
(a−t) fŒ(t) dt : ,

S2= sup
f ¥F

−

M(D)

: 1
b−a

F
a+b−x

x

11
2
(a+b)−t2 fŒ(t) dt : ,

S3= sup
f ¥F

−

M(D)

: 1
b−a

F
b

a+b−x
(b−t) fŒ(t) dt : .

In view of Remark 3.1, it is easily seen that

S1=S3=
M
b−a

F
x

a
(a−t)(t−x) dt=

(x−a)3M
6(b−a)

. (35)

The calculation of S2, which occupies the biggest part of this proof, is
much more difficult. Performing the substitution

tW x+
a+b−2x
2

(t+1)

and introducing

g(t) :=
2

(a+b−2x) M
fŒ 1x+a+b−2x

2
(t+1)2 ,

we find that

F
a+b−x

x

11
2
(a+b)−t2 fŒ(t) dt=−M 1a+b−2x

2
23 F 1

−1
tg(t) dt.
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In this equation, the side condition that f ¥F −

M(D) means equivalently
that g is defined on [−1, 1] and satisfies

g ¥ Lip1, g(−1)=g(1)=0, and F
1

−1
g(t) dt=D (36)

with

D :=
D

M
1 2
a+b−2x
22, (37)

which we may suppose to be non-negative, replacing g by −g otherwise.
We may also suppose that >1−1 tg(t) dt is non-negative, replacing g by
g(− · ) otherwise, which is again a function satisfying (36). Thus S2 can be
obtained as

S2=
M
b−a
1a+b−2x

2
23 W, (38)

where W is the solution of the following optimization problem:

Maximize F(g) :=F
1

−1
tg(t) dt

under the constraints (36).

Now we have to introduce some notations. For any g, we define

g+(t) :=
1
2 (|g(t)|+g(t)) and g−(t) :=

1
2 (|g(t)|−g(t)).

These functions are non-negative, their supports are disjoint, and

g(t)=g+(t)−g−(t).

Furthermore, for a non-negative function g, we define

A(g) :={(t, u) : 0 [ u [ g(t), −1 [ t [ 1}

and denote by |A(g)| the area of A(g).
With these notations, we have

D=|A(g+)|− |A(g−)|

and

F(g)=FF
A(g+)

t d(t, u) − FF
A(g− )

t d(t, u).
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Recall that for a measurable set B in the (t, u)-plane, the integral

1
|B|

FF
B
t d(t, u)

is the abscissa of the center of gravity of B. With this interpretation, we
may treat our optimization problem as follows. In order to increase F, we
first try to modify g such that the conditions (36) are preserved, the areas
of A(g+) and A(g−) remain fixed, but the abscissa of the center of gravity
of A(g+) increases while that of A(g−) decreases.

Now let g be any function satisfying (36). Our first manipulation may be
called the shift to the left (respectively, to the right) of an interval of zeros.

Suppose that for some subinterval [t, g] of [−1, 1], we have g+(t)=0
for all t ¥ [t, g], but g+ does not vanish identically on [−1, t]. Then we
define

g̃+(t) :=˛
0 for −1 [ t [ −1+g−t

g+(t−g+t) for −1+g−t [ t [ g

g+(t) for g [ t [ 1.

We note that g̃+ satisfies the first two conditions in (36),

F
1

−1
g̃+(t) dt=|A(g+)|,

and the length of the supports of g+ and g̃+ is the same. Moreover, the
abscissa of the center of gravity of A(g̃+) is at least as large as that of
A(g+).

Using this construction, we shift successively all the intervals of zeros to
the left, starting with those of length at least 1/2 (if there are any), con-
tinuing with those of length at least 1/3, 1/4, ..., and so on. This process
either terminates after a finite number of steps or it provides a converging
sequence of functions. Analogously we shift all the intervals of zeros of the
function g− to the right. Altogether we arrive at functions gg+ and gg− with
the following properties:

(1) the support of gg− is located to the left of that of gg+;
(2) |A(g+)|=|A(g

g
+)| and |A(g−)|=|A(g

g
−)|;

(3) gg :=gg+−g
g
− satisfies the constraints (36);

(4) F(gg) \ F(g).
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For the next step, we write a :=`|A(g−)| and b :=`|A(g+)|, and
introduce the function

G(t) :=˛
−1−t for −1 [ t [ −1+a

t+1−2a for −1+a [ t [ −1+2a

0 for −1+2a [ t [ 1−2b

t−1+2b for 1−2b [ t [ 1−b

1−t for 1−b [ t [ 1.

(39)

It satisfies the conditions (36). Moreover, the sets A(G−) and A(G+) are
triangles of area a2 and b2, respectively. In view of Remark 3.1, we also see
that on the interval [1−b, 1] any function satisfying (36) is majorized by
G. Comparing the graphs of G and gg, we find that there exist pairwise
disjoint sets B1, B2, and D such that

A(G+)=B1 2D, A(gg+)=B2 2D,

|B1 |=|B2 | and each point of B1 has an abscissa which is larger than the
abscissa of any point of B2. Therefore

1
|B2 |

FF
B2

t d(t, u) [
1
|B1 |

FF
B1

t d(t, u),

and so

FF
A(gg+)

t d(t, u) [ FF
A(G+)

t d(t, u).

Analogously we conclude that

FF
A(gg−)

t d(t, u) \ FF
A(G− )

t d(t, u).

Combining these inequalities, we obtain

F(G) \ F(gg).

Hence it is enough to maximize F over all functions (39) with admissible
values for a and b; in particular, b2−a2=D, as a consequence of (36).

Among these functions, there is exactly one, say Gg, which has no inter-
val of zeros. It is obtained for

a=
1−D
2

and b=
1+D
2
,
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and may be described as

Gg(t)=˛
−1−t for −1 [ t [ − 12 (1+D)

t+D for − 12 (1+D) [ t [
1
2 (1−D)

1−t for 1
2 (1−D) [ t [ 1.

We now claim that, if G, as defined by (39), has an interval of zeros, then

F(G) < F(Gg). (40)

By straightforward calculations, we find that

F(G)=a2(1−a)+b2(1−b)

and

F(Gg)=
1−D2

4
=
1−(b2−a2)2

4
. (41)

Hence (40) is equivalent to

1−4a2−4b2+4a3+4b3−a4−b4+2a2b2 > 0. (42)

Now we recall that the numbers a and b have to satisfy some side condi-
tions for being admissible. From their definition, it is clear that they are
non-negative. Since their squares are equal to the integrals >1−1 G−(t) dt and
>1−1 G+(t) dt, respectively, we readily conclude that a and b are bounded by
1. Since D was supposed to be non-negative, we have b \ a, and since G
shall have an interval of zeros, the inequality −1+2a < 1−2b must hold.
All together, these side conditions on a and b may be expressed as

a, b ¥ [0, 1], a [ b, a+b < 1. (43)

Next we observe that, on the left-hand side of (42), the positive term
1−a−b (which is half the length of the interval of zeros of G) can be
factored out. Carrying out this division (or using a computer algebra
system) and grouping the resulting terms appropriately, we find that (42) is
equivalent to

a(1−a)2+b(1−b)2+a(b−a)+(1−b2)+(1−a−b) ab > 0.

But this inequality is definitely true since, under the restrictions (43), the
terms on the left-hand side are all non-negative and 1−b2 is even positive.
This completes the proof of (40).
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Thus we have shown that W :=(1−D2)/4 is the maximum value of the
functional F and that this maximum is attained for the function Gg. Com-
bining 34–38, we readily obtain (19). Functions f for which equality is
attained are easily deduced from Gg. L

Proof of Theorem 2.6. Using the definition of Kn(t), we start with

F
b

a
Kn(t) f (n)(t) dt=F

x

a
(t−a)n f (n)(t) dt+F

a+b−x

x
Qn(t) f (n)(t) dt

+F
b

a+b−x
(t−b)n f (n)(t) dt.

Performing n−1 successive integrations by parts on the right-hand side, we
obtain

1
n!

F
b

a
Kn(t) f (n)(t) dt=A+B+C+(−1)n−1 F

b

a
Kg(t) fŒ(t) dt, (44)

where

A :=C
n−2

j=0
(−1) j

(x−a)n−j

(n−j)!
f (n−j−1)(x),

B :=C
n−2

j=0
(−1) j 5Q

(j)
n (a+b−x)
n!

f (n−j−1)(a+b−x)−
Q (j)n (x)
n!

f (n−j−1)(x)6 ,

C :=C
n−2

j=0
(−1) j−1

(a−x)n−j

(n−j)!
f (n−j−1)(a+b−x),

and

Kg(t) :=˛
t−a for a [ t [ x

Q (n−1)n (t)
n!

for x < t [ a+b−x

t−b for a+b−x < t [ b.

Changing the index of summation, we easily find that

A+C=(−1)n−1 C
n−1

n=1

(x−a)n+1

(n+1)!
(f (n)(a+b−x)+(−1)n f (n)(x)). (45)

The hypotheses on Qn imply that

Q (j)n (t)=(−1)
n−j Q (j)n (a+b−t) and

Q (n−1)n (t)
n!

=t−
a+b
2
.
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Hence

B=(−1)n C
n−1

n=1

Q (n−1− n)n (x)
n!

(f(n)(a+b−x)+(−1)n f (n)(x)), (46)

and

Kg(t)=−K(t), (47)

where K is the function defined in (31). Now, combining (44)–(47) and
applying Lemma 3.2, we obtain the desired result at once. L

Proof of Corollary 2.2. Let us first suppose that f (n−1) is piecewise con-
tinuously differentiable and |f (n)(t)| [M at all points t where f (n) exists.
Then Theorem 2.6 is applicable and

Qn(t) :=
1
22n
(2x−a−b)n Un 1

2t−a−b
2x−a−b
2 (48)

is an admissible polynomial as required when x ] 1
2 (a+b). Differentiating

it k times at the point t=x, we obtain

Q (k)n (x)=
1
22n
(2x−a−b)n−k U (k)n (1).

From formulae (4.7.2), (4.7.3), and (4.7.14) in [11, pp. 80–81], it follows
that

U (k)n (1)=
2kk! (n+k+1)!
(n−k)! (2k+1)!

,

and so we can calculate Q (k)n (x) explicitly. Replacing k by n− n−1, we find
after some manipulations that

Q (n− n−1)n (x)
n!

=
1

(n+1)!
1x−a+b

2
2n+1 D

n

j=0

1
2
11+n− n

n−j
2 .

With this, it is easily seen that, if fnn(x) is as in the corollary, then

:E(f; x)− C
n−1

n=1
fnn(x)

f (n)(a+b−x)+(−1)n f (n)(x)
(n+1)! (b−a)

:

=
1

n! (b−a)
:F b
a
Kn(t) f (n)(t) dt : . (49)
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Now the right-hand side may be estimated as

:F b
a
Kn(t) f (n)(t) dt : [M F

b

a
|Kn(t)| dt

=M 52(x−a)
n+1

n+1
+F

a+b−x

x
|Qn(t)| dt6

=M 52(x−a)
n+1

n+1
+
(a+b−2x)n+1

22n+1
F
1

−1
|Un(t)| dt6 . (50)

Since >1−1 |Un(t)| dt=2, we obtain the bound of the corollary immediately.
In equation (49), we can avoid the appearance of f (n). In fact, an inte-

gration by parts shows that >ba Kn(t) f (n)(t) dt can be replaced by

((x−a)n−Qn(x))(f(n−1)(x)+(−1)n f (n−1)(a+b−x))

−F
b

a
K −n(t) f

(n−1)(t) dt, (51)

where K −n is the piecewise existing derivative of Kn. Modifying (49) this
way, we obtain a version of (49) which holds for all functions f satisfying
the hypotheses of Corollary 2.2. But now we may employ Lemma 3.1 with
f (n−1) taking the role of f. Given any e > 0, we can choose the partition
(28) such that f (n−1) produces a function f̃ with

f̃(x)=f(n−1)(x), f̃(a+b−x)=f(n−1)(a+b−x),

and

|f (n−1)(t)− f̃(t)| < e (a [ t [ b);

furthermore, f̃ is piecewise continuously differentiable with |f̃Œ(t)| [M for
t ¥ [a, b]0{t0, ..., tN}. Now integration by parts shows that (51) is equal to

F
b

a
Kn(x) f̃Œ(t) dt−F

b

a
K −n(t)(f

(n−1)(t)− f̃(t)) dt.

The first integral may be estimated by the right-hand side of (50) while the
second integral approaches zero as eQ 0. This leads to the desired inequal-
ity.

Finally we note that the function fg, defined in Corollary 2.2, is n−1
times continuously differentiable as a consequence of Lemma 3.3. More-
over, it has a piecewise existing nth derivative which assumes only the
values ±1 such that

Kn(t) f
(n)
g (t)=|Kn(t)| (a [ t [ b).
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Hence if p(t) is any polynomial of degree at most n−1 and f(t) is taken as
±Mfg(t)+p(t), then equality occurs in (50). This completes the proof. L

Proof of Theorem 2.7. The representations (23) and (24) can be
obtained from a paper of Bojanov [1]. In fact, when x=a, then (23)
follows from [1, Theorem 2], when a < x < 12 (a+b), then (23) follows
from [1, Theorem 3 with n=2, x1 :=x, and x2 :=a+b−x], and when
x=1

2 (a+b), then (23) follows from [1, Theorem 3 with n=1 and
x1=

1
2 (a+b)]. Note that, as compared to our notations, the roles of p and

q are interchanged in [1]. Our case p=1 is not explicitly contained in [1],
but it can be included by letting q tend to infinity, that is, pQ. in [1].
This gives (24).

For a proof of the remaining statements, we employ Theorem 2.6. In
doing so, we shall also indicate a possible independent proof of (23) and
(24).

Under the hypotheses of Theorem 2.7, Theorem 2.6 applies and gives

|E(f; x)|=
1

n! (b−a)
:F b
a
Kn(t) f (n)(t) dt : . (52)

The right-hand side may be estimated with the help of Hölder’s inequality.
For p ¥ [1,.] and q defined by p−1+q−1=1 (interpreting .−1 as 0 and
vice versa), we obtain

|E(f; x)| [
1

n! (b−a)
||f (n)||p · ||Kn ||q.

Thus, when ||f (n)||p ] 0,

n! |E(f; x)|
||f (n)||p

[
||Kn ||q
b−a

. (53)

Hence the supremum of the left-hand side, taken over all admissible func-
tions f with ||f (n)||p ] 0, is finite and gives the number R(n, p, x) we are
looking for. In particular, in view of (52), we have

|>ba Kn(t) f (n)(t) dt|
(b−a) ||f (n)||p

[ R(n, p, x) [
||Kn ||q
b−a

(54)

for all admissible functions f with ||f (n)||p ] 0.
A short reflection shows that there exists a monic polynomial of degree
n—let us call it Yn, q—for which the infimum in (21) is attained, that is,

en, q=1F
1

−1
|Yn, q(t)|q dt2

1/q

.
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Choosing the polynomial Qn in Theorem 2.6 as

Qn(t) :=1
2x−a−b
2
2n Yn, q 1

2t−a−b
2x−a−b
2 1x ] 1

2
(a+b)2 , (55)

we find that

||Kn ||q=5
2(x−a)nq+1

nq+1
+1a+b−2x

2
2nq+1 eqn, q6

1/q

for 1 [ q <.. Thus we obtain (23) if we succeed in constructing a sequence
of functions fm, each satisfying the hypotheses of Theorem 2.7, so that the
left-hand side of (54) gets arbitrarily close to the right-hand side when f is
replaced by fm and mQ.. Again, the case where p=1 and q=. needs a
separate discussion.

When p=. or p=2, we can even find an admissible function f with
||f (n)||p ] 0 such that equality occurs in (54) throughout. This is what we
have to show in order to complete the proof.

For p=., the definition of Qn in (55) is the same as in (48), so that Kn
is as in the proof of Corollary 2.2. Then, by (50),

||Kn ||1=
2(x−a)n+1

n+1
+
(a+b−2x)n+1

4n
. (56)

We know already that the function f=c0+c1fg, with fg as defined in
Corollary 2.2, furnishes equality in the estimate of Corollary 2.2 when
M :=||f (n)||.=|c1 |. As a fortunate incidence, we observe that, for this par-
ticular function f,

f (n)(x)=f(n)(a+b−x)=0 (n=1, ..., n−1)

as a consequence of Lemma 3.3. Hence this function f with c1 ] 0 satisfies
all the hypotheses of Theorem 2.7 and yields equality in (54) with p=.,
q=1, and ||Kn ||1 given by (56). This settles the case where p=..

For p=2, the definition of Qn in (55) gives

Qn(t) :=
(2x−a−b)n

12n
n
2

Pn 1
2t−a−b
2x−a−b
2 ,

where Pn is the nth Legendre polynomial. Referring to [11] for properties
of Pn, we find by a straightforward calculation that

||Kn ||
2
2=
2(x−a)2n+1

2n+1
+
(a+b−2x)2n+1

(2n+1) 12n
n
22
.
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Now let f :=c0+c1fg, where fg is the function defined in Theorem 2.7
and c1 ] 0. It is easily seen that this function f satisfies the hypotheses of
Theorem 2.7. Moreover, taking care of the Rodrigues formula for the
Legendre polynomials (see [11, Sect. 4.3]), we find that

f (n)(t)=
c1
n!
Kn(t) (a [ t [ b),

and so

:F b
a
Kn(t) f (n)(t) dt :=||f (n)||2 · ||Kn ||2.

Hence, for our present choice of Kn, f, and p, the two sides of (54) are
again equal. This settles the case where p=2. L
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